做好数据治理能力转移,持续优化企业数据质量
企业数据治理不是一次性项目工作,而是对企业发展持续产生深远影响的连续性工作。企业如何在数据治理项目结束之后,长久维持良好的数据质量,使得数据治理项目的成果不至于落空,是一项值得思考的课题。
俗话说:“以终为始”,数据治理项目的结束,正是企业数据治理发挥效能的开始。为了给企业数字化业务持续深入发展提供切实保障,建立相应的组织机制、制度措施,是每一个数据治理项目结束之前必须要做的事情。然而,在实际工作中,中翰发现,虽然很多企业对数据管理运维工作给予了足够的重视,也设置了专门的组织、配备了相关的工作人员,但最终根本没有发挥出应有的功效。
其原因在于,大多数企业负责人并不了解数据治理的思路,缺乏针对数据管理体系的拓展和完善能力,无法支撑未来企业发展后的数据扩展或管理变更的需求。当遇到问题时,相关负责人没有相关知识理论作为依据,只能“拍脑袋决定、拍胸脯保证”,最终数据的运维和管理无法达到数据治理项目的目标。
对于企业来说,数据治理不是“用好工具就可以了”,更不是“一直靠其他机构就可以了”。只学会使用工具,无法长远;长期依靠外力,成本过高,也没有必要。
因此,企业具备数据治理的能力非常重要,那么,如何才能获得这个能力呢?
一、构建基于过程的知识体系,确保全面的数据治理能力
因此要做好此工作需要长期积累大量的过程知识,构建基于过程的知识收集和推送体系是关键中的关键。具体的过程知识体系结构如下图所示:中翰在长期实践经验中总结出,能力需要有足够多的知识支撑才可以具备,并且是全方位的知识,尤其是过程知识。针对数据管理体系的拓展和完善工作最关键的就是弄清来龙去脉以便延续以往的思路,防止标准体系的走偏和分裂。
二、建立有针对性的培训教育机制
中翰认为,项目培训是成功实施数据治理项目的重要因素。一方面,要增加相关人员对数据治理相关知识的了解、规范管理人员的行为方式,使他们掌握必要的技术,提高数据治理效率;另一方面,要促使企业各级人员改变管理和服务观念,适应并主动地推动数据治理的建设发展,使企业数据治理的标准、制度和流程不只停留在书面上,而是成为企业文化的一部分。
1、制定有针对性的培训策略
项目培训工作应该与项目实施工作同步进行。首先应对全企业各级管理人员的数据管理能力进行摸底调查,提前进行概念性培训并进行考核,确保在系统上线之前企业用户具备基础的数据管理意识。应采用理论与实践结合、现场与远程结合、共性与个性结合、培训与考核结合的培训策略。
2、建立分层培训机制
数据治理平台几乎面对着企业大部分业务人员及中层领导,应根据不同用户的不同特点,把培训对象分为领导(负责人)、普通用户、数据管理员、系统管理员四类,采取集中培训和个别辅导相结合、不同类型用户各有侧重的原则,有针对性地开展培训。
3、培训内容定制化
应分场景、分内容对相关人员进行数据治理的宣贯和培训,帮助企业相关人员了解数据治理的意义,开拓数据治理项目实施与落地的工作思路。
同时,应充分考虑到用户参加学习的人员的基础参差不齐的特点,在设计培训课程时,坚持循序渐进的原则。
中翰为多数企业定制的培训具体内容见下图:
三、注重数据治理知识的收集和转移
为了加强企业数据管理人员对日常数据管理工作的处理能力,且使管理人员在修订、拓展现有数据管理体系时有据可依,在日常数据运维工作中,必须注重对数据治理知识的收集和转移。
1、收集、转移数据治理项目知识
如下图所示,是中翰软件在数据治理项目调研和咨询过程中,进行知识收集和沉淀后,经过专业的“加工、存储、转移”的过程。数据管理体系加载至数据治理平台,调研咨询阶段产生的过程性知识(成果文档、会议纪要、讨论意见等,包括图片、文档、视频等格式)也会被注入未来的运维管理知识库,实现针对数据管理员和日常操作员的工作支撑,使数据管理人员具备日常操作及体系扩展、完善的能力。
2、收集、转移日常数据管理知识
数据治理项目结束后的日常数据管理过程中会生成很多知识,包括数据新增、变更的原因,数据模型新增、变更的原因,数据审批拒绝的原因,问题数据整改建议,数据管理体系整改的建议及讨论等。
收集、存储这些知识,并实时转移到未来的运维管理知识库中,然后再通过加工、转移给运维管理人员,以便提醒他们如何更加合理地规范化管理。通过越来越多的知识的积累、转移,促使数据管理人员的运维能力越来越强,企业数据治理的整体能力也随之逐步增强。
具体日常数据管理知识收集、存储、转移或者落地过程如下图所示:
四、能力转移——保障高效的数据运维管理
关于企业应该具备数据治理的能力,一直没有得到应有的重视,很多企业对于数据治理能力构建目前还都处在项目结束后的汇总式知识转移模式,对数据治理能力的要求比较简单,因此出现了数据治理项目实施后,只是企业的数据运维人员具有对数据治理平台的操作能力,企业对数据标准体系的扩展、完善几乎是无能为力,数据运维管理变得很艰难。所以,中翰认为,必须要实现数据治理能力有效完整的转移。
数据治理能力的转移来源于数据治理知识的有效转移。数据治理知识来源于数据治理项目过程中对调研、咨询知识的收集、加工,以及数据治理项目实施后日常数据运维管理过程中的知识采集、沉淀,也称数据治理知识的生产。数据治理项目具有很高的难度和特殊性,只有数据治理项目成果的知识转移对企业数据治理能力的提升不明显,无法让企业具备有效的数据治理能力,无法有效支撑数据的运维管理。因此,需要注重数据治理知识的生产、积累、存储,并且实时地注入企业数据运维人员的操作界面上,让运维人员在进行数据管理体系拓展操作时可以借鉴、参考数据治理项目实施时的思路,实现数据管理体系拓展与现有项目的无缝衔接。(山东中翰软件有限公司)